Воздушные системы охлаждения
Как уже отмечалось, для уменьшения теплового сопротивления кулеры оснащаются вентиляторами. Конечно же, вентиляторы используются не только вкупе с радиаторами, но и отдельно для создания принудительной конвекции воздуха внутри системного блока (или блока питания). Основу всех современных вентиляторов, используемых в ПК, составляет двигатель постоянного тока с напряжением питания 12 В. Кроме двигателя, в вентиляторе имеется схема управления, которая индуцирует вращающееся магнитное поле, в результате чего приводится в движение ротор двигателя. Схема управления вентилятором может включать в себя и тахометрический контроль для мониторинга скорости вращения, и цепи защиты детектирования остановки вентилятора, и даже термодатчик для контроля температуры радиатора. Вентиляторы могут быть выполнены на подшипниках скольжения (sleeve bearing) и подшипниках качения (ball bearing). Используются также комбинированные схемы из одного подшипника скольжения и одного подшипника качения. Кроме того, могут использоваться два подшипника качения. Вентиляторы на основе подшипников скольжения наиболее просты в изготовлении и дешевы. Однако они довольно шумные, а срок их эксплуатации недолог. Причем со временем уровень шума, создаваемого таким подшипником, только увеличивается. Вентиляторы на основе подшипников качения дороже, но и качественнее. Во-первых, они надежнее в работе, а во-вторых, значительно менее шумные по сравнению с подшипниками скольжения. Все вентиляторы так называемых бесшумных серий (Silent Series) основаны именно на подшипниках качения. Кроме типов используемых подшипников и особенностей схем контроля работы двигателя, вентиляторы характеризуются производительностью, скоростью вращения, типоразмером и уровнем шума. Производительность вентилятора Q является его важнейшей технической характеристикой и определяет объем воздуха, прокачиваемый вентилятором в единицу времени. Производительность вентилятора принято выражать в кубических футах в минуту (Cubic Feet per Minute, CFM). Типичные значения производительности вентиляторов — от 10 до 50 CFM. Скорость вращения вентилятора измеряется в оборотах в минуту (Rotations Per Minute, RPM). Производительность вентилятора непосредственно связана со скоростью вращения: чем быстрее вращается вентилятор, тем больший воздушный поток он создает. Типичные значения скорости вращения вентиляторов — от 1000 до 5000 об/мин. По типоразмеру наиболее распространены вентиляторы 60 х 60, 80 х 80, 92 х 92 и 120 х 120 мм. Понятно, что чем больше размер вентилятора, тем выше его производительность. То есть если сравнить, к примеру, 120- и 80-миллиметровый вентиляторы, то при равной скорости вращения производительность 120-миллиметрового вентилятора будет выше. Одной из важнейших эксплуатационных характеристик вентиляторов является уровень создаваемого ими шума. Уровень шума вентиляторов выражается в децибелах по фильтру А (дБА) (фильтр А учитывает особенность восприятия звука человеческим ухом на разных частотах). Отметим, что человек воспринимает звук, начиная с 30 дБА, а типичное значение шума, создаваемого современными вентиляторами, лежит в диапазоне от 32 до 50 дБА. Уровень шума вентилятора напрямую зависит от скорости его вращения. Наиболее тихими являются именно 120-миллиметровые вентиляторы, поскольку для создания требуемого воздушного потока они могут вращаться с более низкой скоростью, чем вентиляторы меньшего типоразмера. Расчет воздушного потока, необходимого для теплоотвода заданной мощности Как уже было отмечено, для создания эффективной системы теплоотвода от источников тепла (микросхем) используются радиаторы, кулеры и вентиляторы. Однако до сих пор мы рассматривали задачи теплоотвода от отдельно взятых элементов. В реальных условиях все источники тепла находятся внутри одного системного блока и рассеивание тепловой мощности отдельными компонентами ПК происходит именно в корпус системного блока. Если не предусмотреть мер по отводу тепла из корпуса ПК, температура в корпусе будет постепенно увеличиваться, что приведет к уменьшению эффективности теплоотвода от отдельных микросхем и их перегреву. Наиболее распространенный способ отвода тепла из корпуса системного блока заключается в создании с помощью вентиляторов воздушного потока через корпус ПК. Чем больше тепловая мощность, рассеиваемая всеми компонентами компьютера, тем больший воздушный поток потребуется для отвода тепла. В заключение отметим, что для реализации PWM-управления скоростью вращения кулера необходимо активировать данный режим управления в BIOS материнской платы.
|